Degree of the standard isometric minimal immersions of complex projective spaces into spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Local Isometric Immersions into Complex and Quaternionic Projective Spaces

We will prove that if an open subset of CPn is isometrically immersed into CPm, withm < (4/3)n−2/3, then the image is totally geodesic. We will also prove that if an open subset of HPn isometrically immersed into HPm, with m < (4/3)n− 5/6, then the image is totally geodesic.

متن کامل

CR Singular Immersions of Complex Projective Spaces

Quadratically parametrized smooth maps from one complex projective space to another are constructed as projections of the Segre map of the complexification. A classification theorem relates equivalence classes of projections to congruence classes of matrix pencils. Maps from the 2-sphere to the complex projective plane, which generalize stereographic projection, and immersions of the complex pr...

متن کامل

Addendum To: Cr Singular Immersions of Complex Projective Spaces

The Zentralblatt Math number for reference [18] should be Zbl 0373.50005. Reference [6] will not appear under that title. The relevant material (cited on p. 468, [C 1 ]) can be found in Reference [4], or in [C 2 ] instead. The following Sections of this addendum are a continuation of the consideration of real manifolds immersed in C n. They include some of the calculations omitted from the pape...

متن کامل

Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces

We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 1980

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1496158800